If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+76x=0
a = 4; b = 76; c = 0;
Δ = b2-4ac
Δ = 762-4·4·0
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-76}{2*4}=\frac{-152}{8} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+76}{2*4}=\frac{0}{8} =0 $
| u+–566=–674 | | –5+–2k=–1 | | 118/13=15/x | | 7x+15=4x+66 | | 5h^2+3h=0 | | 36=7e+5 | | 7x+15 °=4x+66 ° | | 3(x+2)=2x—3 | | 2x+5=7x–40 | | (3x-5)/(32)=(5x-5)/(56) | | 5x+8-7x=-4×+1 | | 9(e+5)=250 | | r+72=105 | | g−400=–308 | | 33/y=3/28 | | –10−8y=–9y | | X^2-14x×49=0 | | 7+4a=6.2+9a | | 4=m78 | | -19+16x=-601 | | 0.4=x•10 | | 3k=-5k-4÷3/6 | | 2x+3x-5=2 | | c+32+64=180 | | M=19(m-5) | | p^2+32p+256=0 | | 3x2-18x-88=0 | | 16=16+1.5x | | 90=3x(Y+12) | | 6x+33=9x+221 | | 3k=-5k-4÷6 | | -2x+5=9x+27 |